1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! Miscellaneous assembly instructions

/// Puts the processor in Debug state. Debuggers can pick this up as a "breakpoint".
///
/// **NOTE** calling `bkpt` when the processor is not connected to a debugger will cause an
/// exception.
#[inline(always)]
pub fn bkpt() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("bkpt" :::: "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __bkpt();
            }

            __bkpt();
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Blocks the program for *at least* `n` instruction cycles
///
/// This is implemented in assembly so its execution time is the same regardless of the optimization
/// level.
///
/// NOTE that the delay can take much longer if interrupts are serviced during its execution.
#[inline]
pub fn delay(_n: u32) {
    // NOTE(divide by 4) is easier to compute than `/ 3` is it's just a shift (`>> 2`).
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe {
            asm!("1:
                  nop
                  subs $0, $$1
                  bne.n 1b"
                 : "+r"(_n / 4 + 1)
                 :
                 :
                 : "volatile");
        },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __delay(n: u32);
            }

            __delay(_n / 4 + 1);
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// A no-operation. Useful to prevent delay loops from being optimized away.
#[inline]
pub fn nop() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("nop" :::: "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __nop();
            }

            __nop()
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Wait For Event
#[inline]
pub fn wfe() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("wfe" :::: "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __wfe();
            }

            __wfe()
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Wait For Interrupt
#[inline]
pub fn wfi() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("wfi" :::: "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __wfi();
            }

            __wfi()
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Send Event
#[inline]
pub fn sev() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("sev" :::: "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __sev();
            }

            __sev()
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Instruction Synchronization Barrier
///
/// Flushes the pipeline in the processor, so that all instructions following the `ISB` are fetched
/// from cache or memory, after the instruction has been completed.
#[inline]
pub fn isb() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("isb 0xF" ::: "memory" : "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __isb();
            }

            __isb()
            // XXX do we need a explicit compiler barrier here?
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Data Synchronization Barrier
///
/// Acts as a special kind of memory barrier. No instruction in program order after this instruction
/// can execute until this instruction completes. This instruction completes only when both:
///
///  * any explicit memory access made before this instruction is complete
///  * all cache and branch predictor maintenance operations before this instruction complete
#[inline]
pub fn dsb() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("dsb 0xF" ::: "memory" : "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __dsb();
            }

            __dsb()
            // XXX do we need a explicit compiler barrier here?
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Data Memory Barrier
///
/// Ensures that all explicit memory accesses that appear in program order before the `DMB`
/// instruction are observed before any explicit memory accesses that appear in program order
/// after the `DMB` instruction.
#[inline]
pub fn dmb() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe { asm!("dmb 0xF" ::: "memory" : "volatile") },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __dmb();
            }

            __dmb()
            // XXX do we need a explicit compiler barrier here?
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}